Определите наименьшее натуральное число, кратное 2, которое при делении на 15 с остатком дает неполное частное, равное 3.
Определите наименьшее натуральное число, кратное 2, которое при делении на 15 с остатком дает неполное частное, равное 3.
Укажите верное равенство:
Среди точек
выберите ту, которая принадлежит графику функции, изображённому на рисунке:
Если 15% некоторого числа равны 33, то 20% этого числа равны:
Если то
равно:
Найдите значение выражения
Решите неравенство
Вычислите
От пристани одновременно отправляются по течению реки катер(I) и против течения реки моторная лодка (II). На рисунке приведены графики их движения. Определите скорость течения реки (в км/ч), если катер и моторная лодка имеют одинаковые собственные скорости.
Результат упрощения выражения при −1 < x < 1 имеет вид:
Найдите значение выражения
Отрезок AB пересекает плоскость α в точке O. Точка M делит отрезок AB в отношении 3 : 2, считая от точки А. Из точек А, В, M проведены параллельные прямые, пересекающие плоскость α в точках A1, B1, M1 соответственно. Найдите длину отрезка ММ1, если
Прямая a, параллельная плоскости α, находится от нее на расстоянии 6. Через прямую a проведена плоскость β, пересекающая плоскость α по прямой b и образующая с ней угол 60°. Найдите площадь четырехугольника ABCD, если A и B — такие точки прямой a, что AB = 4, а C и D — такие точки прямой b, что CD = 3.
Собственная скорость катера в 9 раз больше скорости течения реки. Расстояние по реке от пункта A до пункта B плот проплыл за время t1, а катер — за время t2. Тогда верна формула:
Сократите дробь
Плоскость, удаленная от центра сферы на 8 см, пересекает ее по окружности длиной 12π см. Найдите площадь сферы.
Через вершину A прямоугольного треугольника ABC (∠C = 90°) проведен перпендикуляр AK к его плоскости. Найдите расстояние от точки K до прямой BC, если AK = 2, AB = 4, BC =
Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 10, то длина стороны AC равна:
Если в правильной четырехугольной пирамиде высота равна 4, а площадь диагонального сечения равна 12, то ее объем равен ...
Найдите произведение большего корня на количество корней уравнения
В равнобедренную трапецию, площадь которой равна вписана окружность. Сумма двух углов трапеции равна 60°. Найдите периметр трапеции.
Найдите сумму целых решений неравенства
Найдите сумму корней (корень, если он единственный) уравнения
Найдите
где
— абсциссы точек пересечения параболы и горизонтальной прямой (см.рис.).
Функция y = f(x) определена на множестве действительных чисел является нечетной, периодической с периодом T = 10 и при
задается формулой
Найдите произведение абсцисс точек пересечения прямой y = 12 и графика функции y = f(x) на промежутке [ −13; 7].
Найдите сумму корней уравнения
Найдите сумму целых решений неравенства
Из точки А проведены к окружности радиусом касательная AB (B — точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 5S.
Найдите значение выражения
Найдите сумму всех трехзначных чисел, которые при делении на 4 и на 6 дают в остатке 1, а при делении на 9 дают в остатке 4.
Петя записал на доске два различных натуральных числа. Затем он их сложил, перемножил, вычел из большего записанного числа меньшее и разделил большее на меньшее. Сложив четыре полученных результата, Петя получил число 1521. Найдите все такие пары натуральных чисел. В ответ запишите их сумму.
Основанием пирамиды SABCD является выпуклый четырехугольник ABCD, диагонали АС и BD которого перпендикулярны и пересекаются в точке O, АО = 9, ОС = 16, ВО = OD = 12. Вершина S пирамиды SABCD удалена на расстояние от каждой из прямых AB, BC, СD и AD. Через середину высоты пирамиды SABCD параллельно ее основанию проведена секущая плоскость, которая делит пирамиду на две части. Найдите значение выражения 10 · V, где V — объем большей из частей.